Conferences in Research and Practice in Information Technology
  

Online Version - Last Updated - 20 Jan 2012

 

 
Home
 

 
Procedures and Resources for Authors

 
Information and Resources for Volume Editors
 

 
Orders and Subscriptions
 

 
Published Articles

 
Upcoming Volumes
 

 
Contact Us
 

 
Useful External Links
 

 
CRPIT Site Search
 
    

Bands of Privacy Preserving Objectives: Classification of PPDM Strategies

Li , R., de Vries, D. and Roddick, J.

    At present, data mining algorithms are largely the domain of governments, large organisations and academia where they provide useful insight into the data. However, without the ability to assure privacy protection, the availability of datasets for research purposes may be impaired. Moreover, privacy-preservation is essential if data mining is to be permitted widespread use in government and commercial contexts. Indeed, as data mining algorithms become more widespread, even the datasets currently made available under limited release now may become more restricted. In addition, the ambiguous definitions currently in use hinder the assessment of the quality of the privacy preservation. This paper categorises the protection objectives during the data mining process into bands and then presents a reconceptualization of privacy-preserving data mining algorithms from the viewpoint of these bands. Existing algorithms from eight protection strategies are selected as examples to explain the six bands. Significantly, gaps are revealed in the Privacy Preserving Data Mining literature that indicate areas for future research.
Cite as: Li , R., de Vries, D. and Roddick, J. (2011). Bands of Privacy Preserving Objectives: Classification of PPDM Strategies. In Proc. Australasian Data Mining Conference (AusDM 11) Ballarat, Australia. CRPIT, 121. Vamplew, P., Stranieri, A., Ong, K.-L., Christen, P. and Kennedy, P. J. Eds., ACS. 137-152
pdf (from crpit.com) pdf (local if available) BibTeX EndNote GS